Banking as an ecosystem

Most of my interest in the use of biology in economics concerns humans being subject to the forces of selection like any other biological organism. With this starting point, it is natural to pull across many of the tools, models and methods of analysis that evolutionary biologists use.

Sometimes those models and tools are of value without the biological underpinnings. Evolutionary economics is one of the major areas where this is done, with the concepts of selection applied at the level of firms (as discussed in my last post).

Another instance of this crossover was in an article published three weeks ago by Andrew Haldane and Robert May, who have proposed that analysis of complexity and stability in ecosystems (dating from the 1970s) is of some use in examining financial systems.

ResearchBlogging.orgHaldane and May’s starting point was the recognition that complex ecosystems are not necessarily stable, with instability increasing with the number and strength of interactions. As an example, they noted recent work by Caccioli and colleagues which suggested that very strong fluctuations in the volume of trading in derivative markets could occur in a complex but complete market. As long as there is a positive premium to trading, banks will supply new financial instruments despite the lack of demand from non-banks. This expansion in derivatives comes at the cost of stability. There is no benefit to this expansion as market completeness has already been achieved.

Haldane and May developed another model which examined how banks may fail in response to a shock. In their model, each bank is linked to the same number of other banks and each has the same size of loans, capital reserves and ratio of loans to total assets. In this model, the more banks each bank is linked to reduces the number of failures following from the first bank failure, as the losses are spread more broadly. However, when later failures do occur, they will involve more banks. The model also showed the potential of small liquidity shocks to amplify through the system. Liquidity “hoarding” can have significant effects, as we saw in the recent crisis.

They also noted that their model reflected earlier work that had shown that as banks become increasingly homogeneous in their holdings (as they seek to cut their risks through diversification), the probability of the entire system collapsing increases. Once they are the same, the probability of one bank failing is the probability of all banks failing.

Haldane and May list a number of policy implications of their model. The first is that there is a broader role to minimum capital requirements for banks than simply reducing risk to each bank. Capital requirements could increase the entire system’s stability. Regulators should set capital limits with the broader systemic implications in mind.

A second implication concerned the goal of regulatory intervention. Typically, regulation might seek to reduce the probability of failure of all institutions to below a certain threshold. Haldane and May suggest that particular institutions that pose broad systemic risk should face higher regulatory requirements.

The most interesting suggestion concerned the desire to shape the topology of the financial system. As banks diversify, they became homogeneous across banks in what they hold. Accordingly, Haldane and May noted that a diversity objective of regulators may have merit. Trying to introduce “modularity” to prevent cascades through the entire system may also be desirable.

Nature published two responses to Haldane and May’s article: one in support of the use of such analysis by Thomas Lux, while Neil Johnson suggests that a model as simple as that used by Haldane and May will produce unreliable predictions that are only as robust as the assumptions used to prepare the model.

I do not have much sympathy for Johnson’s argument. While it is always appropriate for models to contain health warnings about how broadly applicable the model is, they should by their nature have some simplicity. The question is whether there are any concepts that are usefully illustrated. Haldane and May’s paper has several. Without a doubt, further work on these models by adding more elements and testing the robustness of the assumptions could be useful. That is often the way that science progresses. But to suggest that we cannot scale up a paper plane to a full-scale 747 does not mean that a paper plane can teach nothing about flight.

We may see more of these types of studies, or at least in Nature, as an editorial in the same issue suggested that where economic research has significant implications for fields such as behaviour, conservation biology, systems biology or physics, they would be happy to publish it. The editors suggested that this could benefit both economic science and natural science. My instinct is that economics has the most to gain.

Haldane, A., & May, R. (2011). Systemic risk in banking ecosystems Nature, 469 (7330), 351-355 DOI: 10.1038/nature09659

2 comments

  1. I am also a fan of May’s programme to bridge ecology and finance, and I hope that publications in top science venues continue. My only concern, is that so far I have only seen publications with big-name authors on them that usually publish in Nature and Science anyways (although this might be sampling bias on my part). This makes me fear that these papers are being published not because of some deep insight into finance (my friends working in finance have been largely dismissive of these papers) but just due to the status of the authors. However, I am happy that May is working with people at the Bank of England, and not just in a navel-gazing subfield (as physicists often tend to do).

    I don’t know if you keep up with this area, but May and colleagues have expanded their model to account for confidence effects, and have more carefully explored the tradeoff between diversification and system risk. I think that biologists and ecologists can benefit just as much as economists from playing with these models, because they explore themes that are central to many of the social dilemmas at the heart of evolutionary theory. Not to mention that financial data is so much larger and easier to work with than most ecological data.

    1. I’ve encountered similar views of May’s work from the few economists I know who have read May and friends’ work. They don’t mind some ideas in it, but they feel there are serious flaws. Because of my lack of background in finance, I’m not in a position to understand the nature of the paradigm that May and friends are challenging, or how important the so-called flaws in their work are.

      At some point I’m going to put some serious time into understanding the work. Hopefully by then more people with solid backgrounds in finance will have put May and friends’ work through the wringer and put their thoughts out in the public space. There’s nothing like having someone with a solid background pointing out what to them is the obvious, yet would never occur to me.

Comments are closed.